
Warwick Mathematics Exchange

MA131/MA137

Analysis I & II

2022, June 8th

Desync, aka The Big Ree



MA131-MA137 Analysis I & II

Contents

1 Analysis I 1
1.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Roots & Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Rational & Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5.1 Axioms of the Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6.1 Properties of Convergent Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.2 Alternating Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.3 General Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Riemann’s Rearrangement Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Analysis II 8
2.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Terminology & Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Extreme Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 The Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 The Logarithmic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Power Series II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 The Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.12 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.12.1 Taylor’s Theorem with Remainders . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 List of Results & Definitions with Proofs Omitted 22
3.1 Analysis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Analysis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Introduction

Analysis is the study of limits and related concepts - notably, sequences, series, differentiation and inte-
gration. Due to the proofy nature of this module, I will not be including a condensed list of calculations
as was included for MA106 and MA133. I have tried to include worked examples where possible, but,
to be honest, most of this module is just memorising proofs, and not many examples are particularly
helpful.

This document is intended to broadly cover all the topics within the (Mathematical) Analysis II modules.
A section recapping Analysis I is included, but only results will be stated, with any proofs and much
intuition omitted. All such results will be written in a highly condensed and symbolic form.

Disclaimer: This document was made by a first year student who stopped going to lectures for the
second half of this module after week 2. I make absolutely no guarantee that this document is complete
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nor without error. In particular, any content covered exclusively in lectures (if any) will not be recorded
here. Additionally, I do not take Mathematical Analysis, so the accuracy of the MA137 sections may
be impacted. This document was written at the end of the 2022 academic year, so any changes in the
course since then may not be accurately reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content exclusive to MA131 will be outlined in the margins like this.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2022-06-04∗

Current Edition: 2022-06-10

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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1 Analysis I

1.1 Inequalities
x < y ⇔ x+ a < y + a.

a > 0, x < y ⇔ ax < ay.

a < 0, x < y ⇔ ax > ay.

x < y, y < z ⇒ x < z.

Power Rule: If x,y ∈ R+ then for each n ∈ N, x < y if and only if xn < yn.

Idempotency of Modulus Function: ||x|| = |x|

|xy| = |x||y|

Interval Property : If x ∈ R and r ∈ R+, then |x| < r if and only if −r < x < r. Corollary : If x,a ∈ R
and r ∈ R+, then |x− a| < r if and only if a− r < x < a+ r.

Triangle Inequality : For all x,y ∈ R, |x+ y| ≤ |x|+ |y|.

1.2 Sequences
Definition 1.1. A sequence is a function a : N → R, usually denoted as a(n) = an.

We will use the convention that a sequence starts at n = 1. When we talk about a sequence as a whole,
we wrap the function in brackets as follows: (an).

Definition 1.2. A sequence, (an), is:

• strictly increasing if an+1 > an ∀n;

• increasing if an+1 ≥ an ∀n;

• strictly decreasing if an+1 < an ∀n;

• decreasing if an+1 ≤ an ∀n;

• monotonic if an is increasing or decreasing or both (constant);

Definition 1.3. A sequence, (an) is:

• bounded above if ∃M ∈ R such that an ≤ M ∀n. M is then an upper bound of the sequence;

• bounded below if ∃m ∈ R such that an ≥ m∀n. m is then a lower bound of the sequence;

• bounded if it is bounded above and below.

Upper and lower bounds are not unique. For example, if M is an upper bound of (an), then M + 1 is
clearly also an upper bound.

Every increasing sequence is bounded below by its first term.

Every decreasing sequence is bounded above by its first term.

Definition 1.4. A sequence (an) tends to infinity if for every C > 0, there exists N ≥ 1 such that
an > C for all n > N .

Definition 1.5. A sequence (an) tends to minus infinity if for every C > 0, there exists N ≥ 1 such
that an < −C for all n > N .

Let (an) and (bn) be sequences such that bn ≥ an ∀n, and suppose that an → ∞. Then, bn → ∞.

Suppose (an) and (bn) tend to infinity, then,
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• an + bn → ∞

• anbn → ∞

• can → ∞ if c > 0

• canbn → −∞ if c < 0

Definition 1.6. A sequence, (an) converges to or tends to a if ∀ ϵ > 0 ∃N ∈ N such that |an − a| <
ϵ∀n > N .

If such an a exists, the sequence is convergent, and a is the limit of the sequence. Otherwise, the sequence
is divergent. Note that sequences diverge to (minus) infinity.

Uniqueness of Limits: A sequence can converge to at most one limit.

Every convergent sequence is bounded.

Definition 1.7. A sequence (an) is a null sequence if (an) → 0.

Let a,b ∈ R, and (an) → a and (bn) → b be convergent sequences. Then,

• can + dbn → ca+ db.

• anbn → ab.

• an

bn
→ a

b , provided b ̸= 0.

These properties are known as algebra of limits.

Absolute Value Rule: (an) → 0 if and only if (|an|) → 0.

Sandwich Theorem for Sequences: Suppose (an) → l and (bn) → l. If an ≤ cn ≤ bn, then, (cn) → l.

Definition 1.8. A sequence (an) satisfies a certain property eventually if there exists an integer n ≥ 0
such that the sequence (aN+n) satisfies that property.

If a sequence is eventually bounded, it is bounded.

Shift Rule: Let N ≥ 0 be an integer, and let (an) be a sequence. Then, (an) → a if and only if
(aN+n) → a.

Sandwich Theorem with Shift Rule: Suppose (an) → l and (bn) → l. If eventually an ≤ cn ≤ bn then
(cn) → l.

Inequality Rule: Suppose (an) → a and (bn) → b. If eventually an ≤ bn then a ≤ b.

Closed Interval Rule: Suppose (an) → a. If eventually A ≤ an ≤ B, then A ≤ a ≤ B.

If the inequalities above are strict, the lemma does not hold true; limits can escape open intervals as far
as the endpoints. For example, 0 < n

n+1 < 1 ∀n, but n
n+1 → 1.

Definition 1.9. A subsequence of (an) is a sequence of the form (ani), where (ni) is a strictly increasing
subsequence of natural numbers.

If (an) is convergent if and only if every subsequence is convergent.

If (an) diverges to ±∞ then every subsequence diverges to ±∞.

If (an) is bounded above (below), then every subsequence is bounded above (below).

If (ni) is a strictly increasing sequence of natural numbers, then for all i ≥ 1, ni ≥ i.

Monotonic Subsequence Theorem: Every sequence contains a monotonic subsequence.
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Definition 1.10. af is a floor term of (an) if an ≥ af for all n ≥ f .

Each floor term is eventually a lower bound.

Ceiling terms are defined similarly.

1.3 Roots & Powers
Bernoulli’s Inequality : If x > −1 and n ∈ N, then (1 + x)n ≥ 1 + nx.

Binomial Theorem: For all x,y ∈ R, (x+ y)n =
∑n

k=0

(
n
k

)
xkyn−k, where

(
n
k

)
= n!

k!(n−k)! .

If x > 0, then (x
1
n → 1).

(n
1
n ) → 1.

Ratio Lemma Let (an) be a sequence such that an > 0 for all n. Suppose 0 < l < 1 and an+1

an
≤ l

eventually. Then (an) → 0. Corollary Let (an) be a sequence such that an > 0 for all n. If
(

an+1

an

)
→ a

and 0 ≤ a < 1 then (an) → 0.

1.4 Completeness

1.4.1 Rational & Irrational Numbers

Definition 1.11. A real number is rational if it can be written in the form p
q , where p,q ∈ Z and p ̸= 0.

The set of all such numbers is denoted by Q. A real number that is not rational is irrational.

Let a,b ∈ Q and c ∈ R \Q. Then,

• ab ∈ Q

• a+ b ∈ Q

• ac /∈ Q

• a+ c /∈ Q

Between any two distinct real numbers there is a rational number.

Let a < b. There is an infinite number of rational numbers in the open interval (a,b).

Between any two distinct real numbers there is an irrational number.

Let a < b. There is an infinite number of irrational numbers in the open interval (a,b).

1.5 Boundedness
Definition 1.12. A non-empty set A of real numbers is:

• bounded above if ∃U such that a ≤ U for all a ∈ A;

• bounded below if ∃L such that a ≥ L for all a ∈ A;

• bounded if it is bounded above and below.

Definition 1.13. A real number u is a least upper bound of a set A of real numbers if:

• u is an upper bound of A;

• if U is any upper bound of A, then u ≤ U .
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u is also called the supremum of A, and is denoted supA. A real number l is a greatest lower bound of
a set A of real numbers if:

• l is a lower bound of A;

• if L is any lower bound of A, then l ≥ L.

l is also called the infimum of A, and is denoted inf A.

The supremum and infimum of a set are unique.

1.5.1 Axioms of the Real Numbers

• Closure under addition: For x,y ∈ R, x+ y ∈ R.

• Associativity of addition: For x,y,z ∈ R, (x+ y) + z = x+ (y + z).

• Commutativity of addition: For x,y ∈ R, x+ y = y + x.

• Existence of an additive identity : There exists a number, 0, such that for all x ∈ R, x+0 = 0+x = x

• Existence of additive inverses: For x ∈ R, thre exists a number −x such that x+(−x) = (−x)+x =
0.

• Closure under multiplication: For x,y ∈ R, xy ∈ R.

• Associativity of multiplication: For x,y,z ∈ R, (xy)z = x(yz).

• Commutativity of multiplication: For x,y ∈ R, xy = yx.

• Existence of an multiplicative identity : There exists a number, 1, such that for all x ∈ R, x · 1 =
1 · x = x

• Existence of multiplicative inverses: For all x ∈ R,x ̸= 0, there exists a number x−1 such that
x · x−1 = x−1 · x = 1

• Distribution of multiplication over addition: For x,y,z ∈ R, x(y + z) = xy + xz.

• Trichotomy : For x,y ∈ R, exactly one of the following statements holds at once: x < y, x = y,
x > y.

• Transitivity : For x,y,z ∈ R, if x < y and y < z, then x < z.

• Adding to an inequality : For x,y,z ∈ R, if x < y then x+ z < y + z.

• Multiplying an inequality : For x,y,z ∈ R, if x < y and z > 0, then xz < yz.

• Non-degeneracy : 1 ̸= 0

• Completeness: Every non-empty subset that is bounded above has a least upper bound.

Now that we have completed MA132, MA138 and MA106, the reals can be more concisely axiomatically
defined as the 4-tuple (R,+, ·, <) such that R is an Dedekind-complete totally-ordered field.

The completeness axiom distinguishes the reals from the rationals.

There are several equivalent statements of the completeness axiom:

• Every non-empty set of real numbers that is bounded above has a least upper bound.

• Every non-empty set of real numbers that is bounded below has a greatest lower bound.

• Every bounded increasing sequence of real numbers is convergent.

• Every bounded decreasing sequence of real numbers is convergent.
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• Bolzano-Weierstrass Theorem: Every bounded sequence has a convergent subsequence.

• Intermediate Value Theorem: Every continuous function that attains both positive and negative
values has a root.

• Cauchy Completeness: Every Cauchy sequence of real numbers is convergent.

• Every infinite decimal sequence is convergent.

Statements 3 and 4 imply that a monotonic sequence converges if and only if it is bounded.

Definition 1.14. A sequence, (an), has the Cauchy property if ∀ ϵ > 0∃N ∈ N such that |an − am| <
ϵ∀n,m > N .

A sequence of real numbers is Cauchy if and only if it is convergent.

Definition 1.15. A sequence is strictly contracting if for some number 0 < l < 1 (the contraction
factor), |an+1 − an| ≤ l|an − an−1| for all n.

A strictly contracting sequence is Cauchy.

Definition 1.16. A positive real number x has a representation as an infinite decimal if there is a non-
negative integer d0 and a sequence (dn) with dn ∈ {0,1, · · · ,9} for all natural n such that the sequence
defined by

∑n
i=0 di10

−i converges to x. In this case, we write x = d0.d1d2d3 · · · . A negative real number
x has a representation as the infinite decimal (−d0).d1d2d3 · · · if −x has a representation as the infinite
decimal d0.d1d2d3 · · · .

Every infinite decimal ±d0.d1d2d3... represents a real number.

Suppose a positive real number has two different representations as an infinite decimal. Then, one of
these is finite, and the other ends with a recurring string of nines.

Definition 1.17. An infinite decimal ±d0.d1d2d3 · · · is:

• terminating if it ends in repeated zeros;

• recurring if there exists N,r ∈ N such that dn = dn+r for all n > N ;

• non-recurring if is neither terminating nor recurring.

Characterisation of terminating decimals: A number x can be represented by a terminating decmial if
and only if x = p

q , p,q ∈ N and the only prime factors of q are 2 and 5.

Every recurring decimal represents a rational number.

Every rational number can be represented by a recurring infinite decimal or a terminating infinite decimal.

Complete Classification:

• Every real number has at least one decimal representation, and every decimal represents a real
number.

• The rationals are the set of terminating or recurring deecimals.

• The irrationals are the set of non-recurring decimals.

• If a number has two distinct representations, then one will terminate and the other will end with
a recurring string of nines.

1.6 Series

Definition 1.18. A series is an expression of the form
∑∞

n=1 an, where an is some sequence.
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Definition 1.19. The partial sums of a series,
∑∞

n=1 an is a sequence (sn) given by sn =
∑n

i=1 ai.

If sn is the sequence of partial sums of
∑∞

n=1 an, then,

•
∑∞

n=1 an converges if (sn) converges. If (sn) → S, then
∑∞

n=1 an = S.

•
∑∞

n=1 an diverges if (sn) diverges.

•
∑∞

n=1 an diverges to (minus) infinity if (sn) diverges to (minus) infinity.

Definition 1.20. A series of the form
∑∞

n=1 x
n is called a geometric series.

The geometric series
∑∞

n=1 x
n is convergent if |x| < 1, with the sum being given by 1

1−x . The series
diverges if |x| ≥ 1.

The series
∑∞

n=1
1
n is the harmonic series. The harmonic series diverges.

1.6.1 Properties of Convergent Series

Sum Rule for Series: Suppose
∑∞

n=1 an and
∑∞

n=1 bn are convergent series. Then, for all c,d ∈ R,∑∞
n=1(can + dbn) is a convergent series, and is equal to c

∑∞
n=1 an + d

∑∞
n=1 bn.

Shift Rule for Series: Let N ∈ N. Then, the series
∑∞

n=1 an converges if and only if the series
∑∞

n=1 aN+n

converges.

Boundedness Condition: Suppose an ≥ 0 for all n. Then,
∑∞

n=1 an converges if and only if the sequence
of partial sums (sn) =

∑n
i=1 ai is bounded.

Null Sequence Test : If (an) is not a null sequence, then
∑∞

n=1 an diverges.

Comparison Test : Suppose 0 ≤ an ≤ bn for all n. If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges and∑∞
n=1 an ≤

∑∞
n=1 bn

Comparison Test : Suppose 0 ≤ an ≤ bn for all n. If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

Definition 1.21. e :=
∑∞

n=0
1
n!

e = limn→∞
(
1 + 1

n

)n.

e is irrational.

Ratio Test : Suppose an > 0 for all n, and an+1

an
→ l. Then,

∑∞
n=1 an converges if 0 ≤ l < 1, and diverges

if l > 1. If l = 1, the ratio test is inconclusive.

∫ n+1

m

f(x)dx ≤
n∑

k=m

f(k) ≤
∫ n

m−1

f(x)dx

Integral Test for Convergence: Suppose the function f : [1,∞) → R is non-negative and decreasing. Then∑∞
n=1 f(n) converges if and only if the increasing sequence (

∫ n

1
f(x)dx) is bounded, or equivalently, the

sequence (
∫ n

1
f(x)dx) is convergent.

Integral Test for Divergence: Suppose the function f : [1,∞) → R is non-negative and decreasing. Then∑∞
n=1 f(n) diverges if and only if the increasing sequence (

∫ n

1
f(x)dx) is unbounded, or equivalently, the

sequence (
∫ n

1
f(x)dx) is divergent.

The series
∑∞

n=1
1
np converges for p > 1 and diverges for 0 < p ≤ 1.

Definition 1.22. A series
∑∞

n=1 an is absolutely convergent if the series
∑∞

n=1 |an| is convergent.
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If a series is absolutely convergent, it is convergent.

Definition 1.23. A series
∑∞

n=1 an is conditionally convergent if the series
∑∞

n=1 an is convergent, but∑∞
n=1 |an| is divergent.

1.6.2 Alternating Series

Definition 1.24. A series of the form
∑∞

n=1(−1)n+1an, where an ≥ 0 for all n is called an alternating
series.

Alternating Series Test : Suppose (an) is decreasing and null. Then, the alternating series
∑∞

n=1(−1)n+1an
is convergent.

1.6.3 General Series

Ratio Test : Suppose an ̸= 0 for all n and
∣∣∣an+1

an

∣∣∣ → l. Then,
∑∞

n=1 an converges absolutely (and hence
converges) if 0 ≤ l < 1 and diverges if l > 1.

Ratio Test : Suppose an ̸= 0 for all n and
∣∣∣an+1

an

∣∣∣ → ∞. Then,
∑∞

n=1 an diverges.

1.7 Riemann’s Rearrangement Theorem
Definition 1.25. The sequence (bn) is a rearrangement of (an) if there exists a bijection σ : N → N
such that bn = aσ(n) for all n.

Suppose
∑∞

n=1 an is a convergent series, and an ≥ 0 for all n. If (bn) is a rearrangement of (an), then∑∞
n=1 bn converges and

∑∞
n=1 bn =

∑∞
n=1 an

Suppose
∑∞

n=1 an is an absolutely convergent series. If (bn) is a rearrangement of (an), then
∑∞

n=1 bn
converges and

∑∞
n=1 bn =

∑∞
n=1 an

If a series is conditionally convergent, then the series formed from the subsequence of positive terms
diverges to infinity, and the series formed from the subsequence of negative terms diverges to minus
infinity.

Riemann’s Rearrangement Theorem: Suppose
∑∞

n=1 an is a conditionally convergent series. Then, for
every real number, r, there is a rearrangement (bn) of (an) such that

∑∞
n=1 bn = r.

Additionally any conditionally convergent series can be rearranged to diverge to infinity or minus infinity.
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2 Analysis II

2.1 Functions

2.1.1 Terminology & Notation

Given two sets, A and B, a function from A to B assigns every element in A an element in B. We write
f : A → B. If we are talking about elements a ∈ A and b ∈ B, we write f : a 7→ b.

If every element in A is mapped to a distinct element in B, the function is injective. This property can
be written f(a) = f(b) =⇒ a = b or a ̸= b =⇒ f(a) ̸= f(b).

If every element in B has an origin element, the function is surjective. This property can be written as
∀b ∈ B, ∃a ∈ A such that f(a) = b.

If a function is both injective and surjective, it is bijective.

For this function, A is the domain of f , and B is the codomain.

The set {f(x) : x ∈ A} is the image of the function, and is a subset of the codomain.

Do not use the term “range” if possible, as it can refer to both the codomain and the image.

An interval of the real line is a subset, I, of R with the property that if x < y < z and x ∈ I and z ∈ I,
then y ∈ I. That is to say, an interval contains all points between its endpoints, but the endpoints may
or may not be included themselves.

{x : a ≤ x ≤ b} = [a,b] a closed interval
{x : a < x < b} = (a,b) an open interval
{x : a ≤ x < b} = [a,b) a half-open interval

{x : a ≤ x} = [a,∞) a half-infinite interval

Note that we use an open interval bracket whenever we have ∞ as one of the endpoints.

Two functions, f : A → B and g : C → D are equal if A = C, B = D and f(x) = g(x) for all x ∈ A.

2.1.2 Continuity

Definition 2.1. Continuity : A function f : I → R is said to be continuous at c ∈ I if ∀ϵ > 0,∃δ > 0,
such that if x ∈ I and |x− c| < δ, then |f(x)− f(c)| < ϵ.

Let L+ = limx→c+ f(x) and L− = limx→c− f(x). Using these quantities, we define the three classes of
discontinuities:

• A removable discontinuity is where L+ = L− = L, f(c) exists, and f(c) ̸= L. If L+ = L− but f(c)
is undefined, then f(c) is instead a removable singularity.

• A jump discontinuity is where L+ ̸= L−. f(c) can take any value.

• A essential discontinuity is where at least one of L+ and L− do not exist.

Example. The function x 7→ x is continuous for all x.

Proof. Let δ = ϵ, so if |x− c| < δ, then |x− c| < ϵ and |x− c| = |f(x)− f(c)| < ϵ. ■
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Example. The function x 7→ x2 is continuous for all x.

Proof. We present a graphical method for working through these types of questions when the function
is easy to plot.

c

f(c)

f(c) + ϵ

f(c)− ϵ

f−1(f(c)+ϵ)f−1(f(c)−ϵ) x

f(x)

So clearly, if x is less than min
(
|c− f−1 (f(c)− ϵ|) ,|c− f−1 (f(c) + ϵ) |

)
away from c, then |f(x)−f(c)| <

ϵ. Thus, if we let δ = min
(∣∣c−√

c2 − ϵ
∣∣ , ∣∣c−√

c2 + ϵ
∣∣), then |f(x)− f(c)| < ϵ as required. ■

Sequential Continuity : Let f : I → R and c ∈ I. Then, f is continuous at c if and only if, for every
sequence (xn) of points in I which converges to c, we have f(xn) → f(c) as n → ∞.

Algebra of Continuous Functions: Let f,g : I → R be functions continuous at c ∈ I. Then,

• f + g is continuous at c;

• fg is continuous at c;

• f
g and is continuous at c if g(c) ̸= 0.

Continuity of Polynomials and Rational Functions: If p is a polynomial, then p is continuous over R. If
r = p

q is the ratio of two polynomials, it is continuous over R wherever q ̸= 0.

Proof. f(xn) → f(c) and g(xn) → g(c), so applying algebra of sequences, we have (f + g)(xn) =
f(xn) + g(xn) → f(c) + g(c), so (f + g)(x) is continuous by sequential continuity.

The proofs for the continuity of the product and ratio of continuous functions are similar. ■

Composition of Continuous Functions: Let f : I → R and g : X → I. If g is continuous at c and f is
continuous at g(c), then the composition f ◦ g is continuous at c.

Proof. Let (xn) be a sequence in X converging to c. Then, g(xn) → g(c) ∈ I and hence f(g(xn)) →
f(g(c)). ■
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2.2 The Intermediate Value Theorem
Intermediate Value Theorem: Let f : [a,b] → R be continuous and suppose f(a) < k < f(b). Then, there
exists c ∈ [a,b] such that f(c) = k

Proof. Let f(a) < u < f(b) and let S = {x ∈ [a,b] : f(x) ≤ u}. S is non-empty as a ∈ S and is bounded
above by b. By completeness, the supremum, c = supS exists. We will show that f(c) = u.

Let ϵ > 0. As f is continuous, there exists δ > 0 such that |f(x)− f(c)| < ϵ whenever |x− c| < δ, so we
have;

f(x)− ϵ < f(c) < f(x) + ϵ (⋆)

for all x ∈ (c− δ,c+ δ) by the interval property. By the properties of the supremum, there exists some
a∗ ∈ (c− δ,c] that is contained in S. By construction, a∗ is within δ of c, so |a∗ − c| < δ holds, and we
may use the RHS of (⋆) to write:

f(c) < f(a∗) + ϵ ≤ u+ ϵ

Picking a∗∗ ∈ (c,c + δ), we know a∗∗ /∈ S since c is the supremum of S and a∗∗ > c by construction.
Again, a∗∗ is within δ of c, so,

f(c) > f(a∗∗)− ϵ > u− ϵ

and combining both inequalities, we have,

u− ϵ < f(c) < u+ ϵ

and u is the only value of f(c) such that the above inequality holds for all ϵ > 0, so f(c) = u. ■

Existence of Square Roots: Every positive real number has a unique positive square root.

Proof. Let r be a positive real number and consider f : x 7→ x2. f(0) < r and f(r+1) = r2+2r+1 > r,
so there exists a number c ∈ [0,r+1] such that f(c) = r. It follows that c2 = R and c is a positive square
root of r.

Now suppose two distinct numbers positive real numbers, x,y exist such that f(x) = r and f(y) = r. By
trichotomy, and without loss of generality, suppose x < y. As x,y are positive and real, we have x2 < y2,
contradicting that f(x) = r and f(y) = r. It follows that the positive square root of any positive real
number is unique. ■

Continuous Image of an Interval : If f : I → R is continuous over I, then the image of f is also an
interval.

Proof. If x and y are in the image of f , then by the IVT, every point between x and y is also in the
image of f , so the image of f is an interval. ■

Existence of Inverses: Let f : [a,b] → R be continuous and strictly increasing. Then f has a continuous
inverse, f−1 defined over its image.

Proof. Let f(a) = c and f(b) = d. Since f is increasing, the image of f lies between c and d. In fact,
the image of f is exactly [c,d].

For each y, there is a unique number x such that f(x) = y as f is strictly increasing, so we let f−1 = g :
y 7→ x. By construction, g is increasing.

Let ϵ > 0, and suppose f(x) = y ∈ (c,d), so f(x− ϵ) < y < f(x+ ϵ), so there exists δ such that,

f(x− ϵ) < y − δ < y < y + δ < f(x+ ϵ)
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and for any z ∈ (y − δ,y + δ), we have

x− ϵ < g(z) < x+ ϵ

so |g(z)− g(y)| < ϵ.

If instead y = a or y = b, the argument is the same, but with f(x − ϵ) and f(x + ϵ) replaced by c or
d. ■

Existence of Roots For each positive real x and natural n, there is a unique positive nth root x
1
n , and

the map x 7→ x
1
n is continuous.

2.3 The Extreme Value Theorem
Extreme Value Theorem: Let f : [a,b] → R be continuous over [a,b]. Then, there exists numbers c,d ∈ [a,b]
such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a,b].

Proof. Let M be the least upper bound of the set S = {f(x) : x ∈ [a,b]}. If there is no point, c, in the
interval where f(c) = M , then, the function g(x) = M − f(x) is strictly positive and continuous over
[a,b]. By the algebra of limits, 1

g(x) is continuous, and therefore bounded. Let R be an upper bound of
1/g(x) over the interval [a,b], noting that R > 0. Then, 1

R ≤ g(x) = M − f(x), so f(x) ≤ M − 1
R , and

M − 1
R is an upper bound of S. As R is positive, M − 1

R < M , contradicting that M is the least upper
bound of S.

It follows that the point c must exist, and f attains the maximum, f(c) over [a,b]. The proof for the
minimum is similar. ■

2.4 Boundedness
Definition 2.2. A function, f : I → R, is:

• bounded above if ∃M ∈ R such that f(x) ≤ M ∀x ∈ I. M is then an upper bound of the sequence;

• bounded above if ∃m ∈ R such that f(x) ≥ m ∀x ∈ I. m is then a lower bound of the sequence;

• bounded if it is bounded above and below.

Boundedness of Continuous Functions: If f : [a,b] → R is continuous, then f is bounded.

Proof. Suppose f is continuous, but unbounded. We construct a sequence, (xn), where |f(xn)| ≥ n for
all n. By Bolzano-Weierstrass, we can construct a subsequence, (xni) which converges to some value, say,
x. Since the interval over which f is defined is closed, x ∈ [a,b] by the closed interval rule. By sequential
continuity, f(xni

) → f(x), but this is impossible as f(xni
) become arbitrarily large by the construction

of (xn). ■

2.5 Power Series

Definition 2.3. A power series is a series of the form
∑∞

n=0 an(x− c)n.

We mostly focus on the specific case c = 0, with many theorems easily transferring over to the general
case.

Radius of Convergence I : Let
∑∞

n=0 anx
n be a power series with

∑∞
n=0 ant

n convergent. Then,
∑∞

n=0 anx
n

converges absolutely for all x such that |x| < |t|.
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Proof. Since
∑∞

n=0 ant
n converges, we know that antn → 0 as n → ∞ so the sequence of partial sums is

bounded by some M such that |antn| < M for all n. Now,

N∑
n=0

|anxn| =
N∑

n=0

|antn|
∣∣∣x
t

∣∣∣n
≤ M

N∑
n=0

∣∣∣x
t

∣∣∣n
≤ M

∞∑
n=0

∣∣∣x
t

∣∣∣n
= M

1

1−
∣∣x
t

∣∣
which is finite, so the series converges absolutely. ■

Radius of Convergence II : Let
∑∞

n=0 anx
n be a power series. Then, one of the following statements

holds:

• There is a positive real R such that the series converges if |x| < R and diverges if |x| > R. If such
a number exists, it is called the radius of convergence.

• The series converges only if x = 0. In this case, we say the radius of convergence is 0.

• The series converges for all real x. In this case, we say the radius of convergence is ∞.

Absolute Series: Let
∑∞

n=0 anx
n be a power series with radius of convergence R. Then,

∑∞
n=0 |an|xnalso

has radius of convergence R.

Geometric Series I : The series
∑∞

n=0 x
n has radius of convergence R = 1.

Geometric Series II : If p is real, the series
∑∞

n=0 p
nxn has radius of convergence R = 1

|p| .

Proof.
∑∞

n=0 p
nxn=

∑∞
n=0(px)

n, which converges if |px| ≤ 1, so |x| ≤ 1
|p| . ■

The Log Series: The series
∑∞

n=0
xn

n has radius of convergence R = 1.

Continuity of Convergent Power Series: Let
∑∞

n=0 anx
n be a power series with radius of convergence R.

Then, the function, x 7→
∑∞

n=0 anx
n is continuous over (−R,R).

Proof. Let x ∈ (−R,R), and T such that |x| < T < R. It follows that T ∈ (−R,R) so
∑∞

n=0 |an|Tn

converges, so for each ϵ > 0 there exists N for which,

∞∑
n=N+1

|an|Tn <
ϵ

3

Now, if |y − x| < T − |x|, |y| < T and x < T , so,

∞∑
n=N+1

|an||x|n <
ϵ

3
and

∞∑
n=N+1

|an||y|n <
ϵ

3
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The partial sum
∑N

n=0 |an|yn is a polynomial in y, and polynomials are continuous, so there exists some
δ0 such that if |y − x| < δ0, ∣∣∣∣∣

N∑
n=0

any
n −

N∑
n=0

anx
n

∣∣∣∣∣ < ϵ/3

So, letting δ = min(δ0,T − |x|), if |y − x| < δ, we have,∣∣∣∣∣
∞∑

n=0

any
n −

∞∑
n=0

anx
n

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
n=N+1

any
n

∣∣∣∣∣+
∣∣∣∣∣

N∑
n=0

any
n −

N∑
n=0

anx
n

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=N+1

anx
n

∣∣∣∣∣
≤

∞∑
n=N+1

|an||y|n +

∣∣∣∣∣
N∑

n=0

any
n −

N∑
n=0

anx
n

∣∣∣∣∣+
∞∑

n=N+1

|an||x|n < ϵ

■

2.5.1 The Exponential Function

The exponential series exp(x) =
∑∞

n=0
xn

n! converges.

Proof.

xn+1

(n+ 1)!

n!

xn
=

x

n+ 1

→ 0

so the series converges by the ratio test. ■

The function x 7→ exp(x) is continuous by the continuity of convergent power series.

The Characteristic Property of the Exponential : exp(x+ y) = exp(x) exp(y). exp(1) = e.

Proof. For a fixed z ∈ R, consider the function f(x) = exp(x) exp(z − x). Differentating with respct to
x, we have f ′(x) = exp(x) exp(z − x) − exp(x) exp(z − x) = 0, so f(x) must be a constant function by
the MVT. At x = 0, f(x) = exp(z), but, as f(x) is constant, we must have f(x) = exp(z) for all x, so
exp(x) exp(z − x) = exp(z) for all x. Let z = x+ y, and we have exp(x) exp(y) = exp(x+ y). ■

Inequalities for the Exponential :

• 1 + x ≤ ex

• ex ≤ 1
1−x if x < 1.

Proof. If x ≥ 0 then ex = 1 + x + x2

2 + · · · ≥ 1 + x, and if 0 ≤ x < 1, ex = 1 + x + x2

2 + x3

6 + · · · ≤
1 + x+ x2 + x3 + · · · = 1

1−x .

If x < 0, let u = −x so eu ≥ 1 + u implies e−x ≥ 1 − x ⇔ 1
ex ≥ 1 − x ⇔ 1

1−x ≥ ex, so the second
inequality holds for all x < 1.

If x ≤ −1, then 1 + x ≤ 0, but ex > 0, so ex ≥ 1 + x for x ≤ −1. Now, if −1 < x < 0, then 0 < u < 1
and so eu ≤ 1

1−u , so e−x ≤ 1
1+x ⇔ 1

ex ≤ 1
1+x ⇔ 1

+x ≤ ex ■
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The exponential function is strictly increasing, and its image is (0,∞).

Proof. Suppose x < y. Then, ey = ey−xex ≥ (1 + y − x)ex > ex.

Since ex ≥ 1 + x, the exponential function takes arbitrarily large values for large choices of x, and since
e−x = 1

ex , the exponential function takes arbitrarily small values for very large negative choices of x. By
the IVT, the exponential takes all positive values. ■

2.5.2 The Logarithmic Function

The exponential function maps R to (0,∞) and is continuous and strictly increasing. So, by the IVT,
the exponential function has a continuous inverse, called the natural logarithm, defined over (0,∞).

The function log : (0,∞) 7→ R satisfies elog x = x for all positive real x, and log(ey) = y for all real y. For
all positive real a,b, we have log(ab) = log a+ log b.

Powers: If x > 0 and p ∈ R, we define xp = exp(p log x)

Tangent to the Logarithm: If x > 0, then log x ≤ x− 1.

2.6 Limits
Limits of Functions: Let I be an open interval and f a real-valued function defined over I, except
possibly at a point c ∈ I. We write,

lim
x→c

f(x) = L

if for every ϵ > 0, there exists δ > 0 such that if 0 < |x− c| < δ, then |f(x)− L| < ϵ.

Limits and Continuity : If f : I → R is defined over the open interval I and c ∈ I, then f is continuous
at c if and only if limx→c f(x) = f(c).

Continuous and Sequential Limits: If f : I\{c} → R is defined over the interval I\{c}, then limx→c f(x) =
L if and only if for every sequence (xn) of points in I \ {c} which converges to c, we have f(xn) → L.

Algebra of Limits: If f,g : I\{c} → R are defined over the interval I\{c} and limx→c f(x) and limx→c g(x)
exist, then,

• limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x)

• limx→c f(x)g(x) = limx→c f(x) limx→c g(x)

• limx→c
f(x)
g(x) = limx→c f(x)

limx→c g(x) if limx→c g(x) ̸= 0.

One Sided Limits: Let f : [a,b] → R. We write,

lim
x→c+

f(x) = L

if for every ϵ > 0, there exists δ > 0 such that if c < x < c+ δ, then |f(x)− L| < ϵ. The limit,

lim
x→c−

f(x) = L

is defined similarly.

Infinite Limits: Let I be an open interval and f a real-valued function defined over I, except possibly
at a point c ∈ I. We write,

lim
x→c

f(x) = ∞

if for every M > 0 there is a δ > 0 such that if 0 < |x− c| < δ then f(x) > M . The limit,

lim
x→c

f(x) = −∞
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is defined similarly.

Limits at Infinity : If f : R → R, we write,

lim
x→∞

f(x) = L

if for every ϵ > 0 there is an N such that if x > N then |f(x)− L| < ϵ.

Uniqueness of Limits: If f(x) → M as x → c, and f(x) → L as x → c, then M = L.

Sandwich Theorem for Limits: Let I be an interval containing the point a. Let g,f,h be functions
defined over I, except possibly at a. If for every x ∈ I, we have g(x) ≤ f(x) ≤ h(x) and limx→a g(x) =
limx→a h(x) = L, then limx→a f(x) = L.

Note that a does not have to lie within the interior of I, and can be an endpoint, with the limits above
being evaluated as one-sided limits. Similarly, the statement holds for infinite intervals, where x → ±∞.

2.7 The Derivative
Let f : I → R and c ∈ I. f is differentiable at c if,

lim
h→0

f(c+ h)− f(c)

h

exists. If so, we denote this limit f ′(c).

Letting x = c+ h, we can equivalently write the derivative as,

lim
x→c

f(x)− f(c)

x− c

Differentiability and Continuity : If f : I → R is differentiable at c ∈ I then f is continuous at c.

Proof. f(x)− f(c) = f(x)−f(c)
x−c · (x− c). f(x)−f(c)

x−c → f ′(c) as x → c by the definition of a derivative, and
(x− c) → 0 as x → c, so f(x)−f(c)

x−c · (x− c) → f ′(c) · 0 = 0, so f(x)− f(c) → 0, and f(x) → f(c). ■

Sum and Product Rules: Suppose f,g : I → R are differentiable at c ∈ I. Then, (f + g) and fg are
differentiable at c, and,

(f + g)′(c) = f ′(c) + g′(c)

(fg)′(c) = f(c)g′(c) + f ′(c)g(c)

Derivatives of Monomials: If n is a natural, then the derivative of f : x 7→ xn is f ′ : x 7→ nxn−1.

Proof. For n = 1, we have f : x 7→ x. For every c, and h ̸= 0,

lim
h→0

f(c+ h)− f(c)

h
= lim

h→0

c+ h− c

h

= 1

Suppose the statement holds for arbitrary fixed n ≥ 1. Then, xn+1 = xf(x), so by the product rule, the
derivative is 1 · f(x) + xf ′(x) = xn + xnxn−1 = (n+ 1)xn, which is the statment for n+ 1, completing
the inductive step. ■

Chain Rule: Suppose f : I → R, g : X → I, g is differentiable at c ∈ X and f is differentiable at
g(c) ∈ I. Then, the composition f ◦ g is differentiable at c, and,

(f ◦ g)′(c) = f ′(g(c)) · g′(c)
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2.8 The Mean Value Theorem
Rolle’s Theorem: Suppose f : [a,b] → R is continuous over [a,b] and differentiable over (a,b), and that
f(a) = f(b). Then, there is a point c ∈ (a,b) such that f ′(c) = 0.

Proof. If f is constant over the interval, then f ′ is 0 everywhere over the interval. If not, it takes values
distinct from f(a) = f(b).

As f is continuous, there f attains a maximum and minimum within the interval [a,b] by the extreme
value theorem. Suppose f attains a maximum at c ̸= a,b, so c ∈ (a,b).

If x ̸= c, then f(x) ≤ f(c), as c is a maximum, so

f(x)− f(c) ≤ 0 (⋆)

Suppose x > c. Then, x− c > 0, so 1
x−c > 0. Multiplying both sides of (⋆) by 1

x−c , we have,

f(x)− f(c)

x− c
≤ 0

so f ′(c) ≤ 0

Now suppose x < c. Then, x− c < 0, so 1
x−c < 0. Multiplying both sides of (⋆) by 1

x−c , we now need to
swap the direction of inequality as we are multiplying by a negative value, so we have,

f(x)− f(c)

x− c
≥ 0

so f ′(c) ≥ 0.

Using the two above equations, we deduce that f ′(c) = 0 ■

Mean Value Theorem: Suppose f : [a,b] → R is continuous over [a,b] and differentiable over (a,b). Then,
there is a point c ∈ (a,b) such that,

f ′(c) =
f(b)− f(a)

b− a

This theorem may be more useful in the form,

f(b)− f(a) = (b− a)f ′(c)

Informally, the theorem states that, for any arc between two endpoints, a and b, there exists at least
one point between the two endpoints such that the tangent to the arc is parallel to the line that passes
through its endpoints.

Another statement of the theorem that more accurately reflects its name, is that there exists at least
one point, c, between the two endpoints of the graph of y = f(x) such that the slope at f(c) is equal to
the the average slope of the graph between the endpoints.

Proof. Let

g(x) = f(x)− xr

where r = f(b)−f(a)
b−a , which is a constant. Then,

g(b)− g(a) = (f(b)− br)− (f(a)− ar)

= f(b)− f(a)− (b− a)r
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= f(b)− f(a)− (f(b)− f(a))

= 0

So, by Rolle’s Theorem, there exists a point c ∈ (a,b) such that g′(c) = 0. So, we have,

g′(x) = f ′(x)− r

g′(c) = f ′(c)− r

= 0

=⇒ f ′(c) = r

=
f(b)− f(a)

b− a

■

Functions with Positive Derivative: If f : I → R is differentiable over the open interval I, and f ′(x) > 0
for all x ∈ I, then f is strictly increasing over I.

Proof. If there were two points a and b such that a < b but f(a) ≥ f(b), then b−a > 0 and f(a)−f(b) ≥ 0,
so f ′(c) = f(b)−f(a)

b−a ≤ 0 for some point c ∈ I, contradicting that f ′(x) > 0 for all x ∈ I. ■

Functions with Zero Derivative: If f : I → R is differentiable over the open interval I and f ′(x) = 0 for
all x ∈ I, then f is constant over I.

Proof. By the MVT, there exists c ∈ I such that (x− a)f ′(c) = f(x)− f(a). But, f ′(c) = 0 for all c ∈ I,
so f(x)− f(a) = 0 and f(x) = f(a). As the choice of x and a were arbitrary, letting f(a) = k, we have
f(x) = k for all x ∈ I. ■

Extrema and Derivatives: Suppose f : [a,b] → R is continuous and is differentiable over (a,b). Then, f
attains its maximum and minimum at points within the open interval where f ′ = 0, or at one of the
endpoints, a or b.

Example. Find the maximum of xe−x over R.

The derivative of f(x) = xe−x is f ′(x) = (1 − x)e−x. e−x is positive for all x, and (1 − x) is positive
if x < 1 and negative if x > 1, so the whole expression is positive if x < 1 and negative if x > 1. By
the MVT, the function increases until x = 1 and then decreases, so the maximum is attained at x = 1,
where f(1) = e−1.

2.9 Inverses

Derivatives of Inverses: Let f : (a,b) → R be differentiable with positive derivative. Then, g = f−1 is
differentiable, and g′(x) = 1

f ′(g(x)) .

Proof. Since f has positive derivative, it is continuous and strictly increasing. Therefore, it has a contin-
uous inverse. Let (c,d) be the range of the image of f , and let x ∈ (c,d) and g(x) = y. Consider

g′(x) = lim
u→x

g(u)− g(x)

u− x

Let v = g(u). As u → x, we have g(u) → g(x) as g is continuous at x, so v → y, and,

= lim
v→y

v − y

f(v)− f(y)
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=
1

f ′(y)

=
1

f ′(g(x))

■

2.10 Power Series II

Differentiability of Power Series I : Let
∑∞

n=0 anx
n be a power series with radius of convergence R. Then,

the series
∑∞

n=0 nanx
n−1 has the same radius of convergence.

Proof. The series
∑∞

n=0 |an|xn has the same radius of convergence by absolute series theorem. Let
0 < x < y < R, so

∑∞
n=0 |an|xn and

∑∞
n=0 |an|yn both converge. It follows that their difference,

∞∑
n=0

|an|yn −
∞∑

n=0

|an|xn =

∞∑
n=0

|an|(yn − xn)

also converges, and thus
∞∑

n=0

|an|
(yn − xn)

y − x

also converges. But

∞∑
n=0

|an|
(yn − xn)

y − x
=

∞∑
n=1

|an|(yn−1 + yn−2x+ · · ·+ xn−1)

Noting that y > x, we have,

≥
∞∑

n=1

|an|(xn−1 + xn−2x+ · · ·+ xn−1)

≥
∞∑

n=1

|an|(xn−1 + xn−1 + · · ·+ xn−1︸ ︷︷ ︸
n

)

≥
∞∑

n=1

|an|nxn−1

so
∑∞

n=0 n|an|xn−1 also converges, further implying that
∑∞

n=0 nanx
n−1 converges (absolutely). ■

Differentiability of Power Series II : Let
∑∞

n=0 anx
n be a power series with radius of convergence R.

Then, the function, x 7→
∑∞

n=0 anx
n is continuous and differentiable over (−R,R).

Proof. Let x ∈ (−R,R), and T such that |x| < T < R. It follows that T ∈ (−R,R) so, by the theorem
above,

∑∞
n=0 n|an|Tn−1 converges, so for each ϵ > 0 there exists N for which,

∞∑
n=N+1

n|an|Tn−1 <
ϵ

3

Now, if |y − x| < T − |x|, |y| < T and x < T , so,∣∣∣∣∣
∞∑

n=N+1

nanx
n−1

∣∣∣∣∣ ≤
∞∑

n=N+1

n|an||x|n−1 <
ϵ

3
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and also ∣∣∣∣∣
∞∑

n=N+1

an
yn − xn

y − x

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

an(y
n−1 + yn−2x+ · · ·+ xn−1)

∣∣∣∣∣
≤

∞∑
n=N+1

|an|(|y|n+1 + · · ·+ |x|n−1)

≤
∞∑

n=N+1

n|an|Tn−1

<
ϵ

3

The finite sum,
N∑

n=1

an(y
n−1 + yn−2x+ · · ·+ xn−1)

is a polynomial in y equal to
∑N

n=1 nanx
n−1 when y = x, so there exists a delta0 > 0 such that if

0 < |y − x| < δ0,∣∣∣∣∣
N∑

n=1

an
yn − xn

y − x
−

N∑
n=1

nanx
n−1

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=1

an(y
n−1 + yn−2x) + · · ·+ xn−1 −

N∑
n=1

nanx
n−1

∣∣∣∣∣
<

ϵ

3

So, letting δ = min(δ0,T − |x|), if |y − x| < δ, we have,∣∣∣∣∣
∞∑

n=1

an
yn − xn

y − x
−

∞∑
n=1

nanx
n−1

∣∣∣∣∣ ≤∣∣∣∣∣
∞∑

n=N+1

an
yn − xn

y − x

∣∣∣∣∣+
∣∣∣∣∣

N∑
n=1

an
yn − xn

y − x
−

N∑
n=1

nanx
n−1

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=N+1

nanx
n−1

∣∣∣∣∣ < ϵ

■

The derivative of the exponential function is equal to the exponential function.

2.11 The Trigonometric Functions
Definition 2.4.

cos(x) :=

∞∑
n=0

(−1)n

(2n)!
x2n

= 1− x2

2!
+

x4

4!
− · · ·

sin(x) :=

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

= x− x3

3!
+

x5

5!
− · · ·

Addition Formulae: For all x,y ∈ R,

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y)
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Proof. Let f(x) = cos(x) cos(z−x)− sin(x) sin(z−x). f ′(x) = 0, so f(x) is constant by the MVT. When
x = 0, f(0) = cos(0) cos(z) − sin(0) sin(z) = cos(z), so f(x) = cos(z) for all x. Letting z = x + y, we
have cos(x) cos(y) sin(x) sin(y) = f(x) = cos(z) = cos(x+ y).

The proof for sin(x+ y) is similar. ■

The Circular Property : For all x ∈ R,

cos2(x) + sin2(y) = 1

Proof. In the addition formula for cos(x+ y), let y = −x. By the even and odd properties of cos(x) and
sin(x), we have, 1 = cos(0) = cos(x− x) = cos(x) cos(−x)− sin(x) sin(−x) = cos2(x) + sin2(x). ■

2.12 Taylor’s Theorem
Cauchy’s Mean Value Theorem: If f,g : [a,b] → R are continuous and differentiable over (a,b), and
g′(t) ̸= 0 for t ∈ (a,b), then there exists a point c such that,

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)

Proof. Consider h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

h(a) = f(a)g(b)− f(a)g(a)− f(b)g(a) + f(a)g(a)

= f(a)g(b)− f(b)g(a)

h(b) = f(b)g(b)− f(b)g(a)− f(b)g(b) + f(a)g(b) = f(a)g(b)− f(b)g(a)

= f(a)g(b)− f(b)g(a)

= h(a)

So h(a) = h(b), and, by Rolle’s Theorem, there exists a point c ∈ (a,b) such that h′(c) = 0, and

h′(x) = f ′(x)[g(b)− g(a)]− g′(x)[f(b)− f(a)]

h′(c) = f ′(c)[g(b)− g(a)]− g′(c)[f(b)− f(a)]

= 0

so f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)]. If g(a) = g(b), then a stationary point of g would exist in (a,b)
by Rolle’s Theorem, but g′ is given to be non-zero over (a,b), so g(a) ̸= g(b). We can then divide both
sides of the equation by g′(c)[g(b)− g(a)], obtaining the result. ■

l’Hôpital’s Rule: If f,g : I → R are differentiable on the open interval I and f(c) = g(c) = 0 at some
point c ∈ I, then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

provided the second limit exists.

Note: You cannot use l’Hôpital’s rule on expressions like limx→0
sin(x)

x , as l’Hôpital’s rule relies on
derivatives, and the limit in question is required to know the derivative of sin. In these cases, you should
use the sandwich theorem.

Proof. Suppose f,g are differentiable at c ∈ R, f ′,g′ are continuous, f(c) = g(c) = 0 and g′(c) ̸= 0. Then,

lim
x→c

f(x)

g(x)
= lim

x→c

f(x)− 0

g(x)− 0
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= lim
x→c

f(x)− f(c)

g(x)− g(c)

= lim
x→c

(
f(x)−f(c)

x−c

)
(

g(x)−g(c)
x−c

)
=

limx→c

(
f(x)−f(c)

x−c

)
limx→c

(
g(x)−g(c)

x−c

)
=

f ′(c)

g′(c)

= lim
x→c

f ′(x)

g′(x)

■

2.12.1 Taylor’s Theorem with Remainders

Taylor’s Theorem with Lagrange Remainder : If f : I → R is n times differentiable on the open interval
I, and x,a ∈ I, then,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1 +

f (n)(t)

n!
(x− a)n

for some t ∈ (x,a).

Taylor’s Theorem with Cauchy Remainder : If f : I → R is n times differentiable on the open interval I,
and x,a ∈ I, then,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1 +

f (n)(t)

(n− 1)!
(x− t)n−1(x− a)

for some t ∈ (x,a).

Proof. The function,

g(x) = f(x)−
(
f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1

)
satisfies g(a) = 0, g′(a) = 0, · · · , g(n−1)(a) = 0, and g(n)(x) = f (n)(x), because the bracket on the RHS
goes to 0 after n differentiations.

If we let,

h(x) = g(x)− g(b)
(x− a)n

(b− a)n

then the first (n− 1) derivatives of h also vanish at x = a, but we also have h(b) = 0.

Now, we proceed inductively. Since h(n) = h(a) = 0, there exists a point t1 ∈ (a,b) such that h′(t1) = 0
by Rolle’s Theorem. Since h′(t1) = h(a) = 0, we again apply Rolle’s Theorem so a there exists a point
t2 ∈ (a,t1) such that h′′(t2) = 0. Repeating this process, we eventually find a point t = tn where
h(n)(t) = 0.

h(n)(t) = g(n)(t)− g(b)
n!

(b− a)n
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= 0

So,

g(n)(t) = g(b)
n!

(b− a)n

g(b) =
g(n)(t)

n!
(b− a)n

Recalling our definition of g(x), we have,

=
f (n)(t)

n!
(b− a)n

■

Proof. Let G be continuous over [a,x] and differentiable over (a,x) with G′ ̸= 0, and let

F (t) = f(t) + f ′(t)(x− t) +
f ′′(t)

2!
(x− t)2 + · · · f

(n)(t)

n!
(x− t)n

for t ∈ [a,x]. Note that F (x) = f(x) due to every term after the first having (x − t) as a factor. Then,
by Cauchy’s MVT, there exists some c ∈ (a,x) such that,

F ′(c)

G′(c)
=

F (x)− F (a)

G(x)−G(a)
(⋆)

Note that F (x)− F (a) = Rn(x) is exactly the remainder term of the Taylor polynomial of f(x).

F ′(t) =f ′(t) + [f ′′(t)(x− t)− f ′(t)] +

[
f (3)(t)

2!
(x− t)2 − f (2)(t)

1!
(x− t)

]
+ · · ·

+

[
f (n+1)(t)

n!
(x− t)n − f (n)(t)

(n− 1)!
(x− t)(n− 1)

]
=
f (n+1)(t)

n!
(x− t)n

Substituting the above into (⋆), we have,

Rn(x) =
f (n+1)(c)

n!
(c− x)n

G(x)−G(a)

G′(c)

If we let G(t) = (x − t)k+1, we get the Lagrange form of the remainder. If we let G(t) = t − a, we get
the Cauchy form of the remainder. ■

3 List of Results & Definitions with Proofs Omitted

3.1 Analysis I
A sequence (an) tends to infinity if for every C > 0, there exists N ≥ 1 such that an > C for all n > N .

A sequence, (an) converges to or tends to a if ∀ ϵ > 0 ∃N ∈ N such that |an − a| < ϵ∀n > N .

Bolzano-Weierstrass Theorem: Every bounded sequence has a convergent subsequence.

A sequence, (an), has the Cauchy property if ∀ ϵ > 0 ∃N ∈ N such that |an − am| < ϵ∀n,m > N .
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A sequence is strictly contracting if for some number 0 < l < 1 (the contraction factor), |an+1 − an| ≤
l|an − an−1| for all n.

Boundedness Condition: Suppose an ≥ 0 for all n. Then,
∑∞

n=1 an converges if and only if the sequence
of partial sums (sn) =

∑n
i=1 ai is bounded.

Comparison Test : Suppose 0 ≤ an ≤ bn for all n. If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges and∑∞
n=1 an ≤

∑∞
n=1 bn

Comparison Test : Suppose 0 ≤ an ≤ bn for all n. If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

Ratio Test : Suppose an > 0 for all n, and an+1

an
→ l. Then,

∑∞
n=1 an converges if 0 ≤ l < 1, and diverges

if l > 1. If l = 1, the ratio test is inconclusive.

∫ n+1

m

f(x)dx ≤
n∑

k=m

f(k) ≤
∫ n

m−1

f(x)dx

Integral Test for Convergence: Suppose the function f : [1,∞) → R is non-negative and decreasing. Then∑∞
n=1 f(n) converges if and only if the increasing sequence (

∫ n

1
f(x)dx) is bounded, or equivalently, the

sequence (
∫ n

1
f(x)dx) is convergent.

Integral Test for Divergence: Suppose the function f : [1,∞) → R is non-negative and decreasing. Then∑∞
n=1 f(n) diverges if and only if the increasing sequence (

∫ n

1
f(x)dx) is unbounded, or equivalently, the

sequence (
∫ n

1
f(x)dx) is divergent.

The series
∑∞

n=1
1
np converges for p > 1 and diverges for 0 < p ≤ 1.

Alternating Series Test : Suppose (an) is decreasing and null. Then, the alternating series
∑∞

n=1(−1)n+1an
is convergent.

Ratio Test : Suppose an ̸= 0 for all n and
∣∣∣an+1

an

∣∣∣ → l. Then,
∑∞

n=1 an converges absolutely (and hence
converges) if 0 ≤ l < 1 and diverges if l > 1.

Ratio Test : Suppose an ̸= 0 for all n and
∣∣∣an+1

an

∣∣∣ → ∞. Then,
∑∞

n=1 an diverges.

3.2 Analysis II
Continuity : A function f : I → R is said to be continuous at c ∈ I if ∀ϵ > 0,∃δ > 0, such that if x ∈ I
and |x− c| < δ, then |f(x)− f(c)| < ϵ.

Let L+ = limx→c+ f(x) and L− = limx→c− f(x). Using these quantities, we define the three classes of
discontinuities:

• A removable discontinuity is where L+ = L− = L, f(c) exists, and f(c) ̸= L. If L+ = L− but f(c)
is undefined, then f(c) is instead a removable singularity.

• A jump discontinuity is where L+ ̸= L−. f(c) can take any value.

• A essential discontinuity is where at least one of L+ and L− do not exist.

Sequential Continuity : Let f : I → R and c ∈ I. Then, f is continuous at c if and only if, for every
sequence (xn) of points in I which converges to c, we have f(xn) → f(c) as n → ∞.

Intermediate Value Theorem: Let f : [a,b] → R be continuous and suppose f(a) < k < f(b). Then, there
exists c ∈ [a,b] such that f(c) = k
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Continuous Image of an Interval : If f : I → R is continuous over I, then the image of f is also an
interval.

Existence of Inverses: Let f : [a,b] → R be continuous and strictly increasing. Then f has a continuous
inverse, f−1 defined over its image.

Extreme Value Theorem: Let f : [a,b] → R be continuous over [a,b]. Then, there exists numbers c,d ∈ [a,b]
such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a,b].

Boundedness of Continuous Functions: If f : [a,b] → R is continuous, then f is bounded.

Radius of Convergence I : Let
∑∞

n=0 anx
n be a power series with

∑∞
n=0 ant

n convergent. Then,
∑∞

n=0 anx
n

converges absolutely for all x such that |x| < |t|.

Radius of Convergence II : Let
∑∞

n=0 anx
n be a power series. Then, one of the following statements

holds:

• There is a positive real R such that the series converges if |x| < R and diverges if |x| > R. If such
a number exists, it is called the radius of convergence.

• The series converges only if x = 0. In this case, we say the radius of convergence is 0.

• The series converges for all real x. In this case, we say the radius of convergence is ∞.

Absolute Series: Let
∑∞

n=0 anx
n be a power series with radius of convergence R. Then,

∑∞
n=0 |an|xnalso

has radius of convergence R.

Limits of Functions: Let I be an open interval and f a real-valued function defined over I, except
possibly at a point c ∈ I. We write,

lim
x→c

f(x) = L

if for every ϵ > 0, there exists δ > 0 such that if 0 < |x− c| < δ, then |f(x)− L| < ϵ.

Limits and Continuity : If f : I → R is defined over the open interval I and c ∈ I, then f is continuous
at c if and only if limx→c f(x) = f(c).

Continuous and Sequential Limits: If f : I\{c} → R is defined over the interval I\{c}, then limx→c f(x) =
L if and only if for every sequence (xn) of points in I \ {c} which converges to c, we have f(xn) → L.

Sandwich Theorem for Limits: Let I be an interval containing the point a. Let g,f,h be functions
defined over I, except possibly at a. If for every x ∈ I, we have g(x) ≤ f(x) ≤ h(x) and limx→a g(x) =
limx→a h(x) = L, then limx→a f(x) = L.

Note that a does not have to lie within the interior of I, and can be an endpoint, with the limits above
being evaluated as one-sided limits. Similarly, the statement holds for infinite intervals, where x → ±∞.

Let f : I → R and c ∈ I. f is differentiable at c if,

lim
h→0

f(c+ h)− f(c)

h

exists. If so, we denote this limit f ′(c).

Letting x = c+ h, we can equivalently write the derivative as,

lim
x→c

f(x)− f(c)

x− c

Differentiability and Continuity : If f : I → R is differentiable at c ∈ I then f is continuous at c.

Rolle’s Theorem: Suppose f : [a,b] → R is continuous over [a,b] and differentiable over (a,b), and that
f(a) = f(b). Then, there is a point c ∈ (a,b) such that f ′(c) = 0.
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Mean Value Theorem: Suppose f : [a,b] → R is continuous over [a,b] and differentiable over (a,b). Then,
there is a point c ∈ (a,b) such that,

f ′(c) =
f(b)− f(a)

b− a

This theorem may be more useful in the form,

f(b)− f(a) = (b− a)f ′(c)

Functions with Positive Derivative: If f : I → R is differentiable over the open interval I, and f ′(x) > 0
for all x ∈ I, then f is strictly increasing over I.

Functions with Zero Derivative: If f : I → R is differentiable over the open interval I and f ′(x) = 0 for
all x ∈ I, then f is constant over I.

Extrema and Derivatives: Suppose f : [a,b] → R is continuous and is differentiable over (a,b). Then, f
attains its maximum and minimum at points within the open interval where f ′ = 0, or at one of the
endpoints, a or b.

Derivatives of Inverses: Let f : (a,b) → R be differentiable with positive derivative. Then, g = f−1 is
differentiable, and g′(x) = 1

f ′(g(x)) .

Differentiability of Power Series I : Let
∑∞

n=0 anx
n be a power series with radius of convergence R. Then,

the series
∑∞

n=0 nanx
n−1 has the same radius of convergence.

Differentiability of Power Series II : Let
∑∞

n=0 anx
n be a power series with radius of convergence R.

Then, the function, x 7→
∑∞

n=0 anx
n is continuous and differentiable over (−R,R).

Cauchy’s Mean Value Theorem: If f,g : [a,b] → R are continuous and differentiable over (a,b), and
g′(t) ̸= 0 for t ∈ (a,b), then there exists a point c such that,

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)

l’Hôpital’s Rule: If f,g : I → R are differentiable on the open interval I and f(c) = g(c) = 0 at some
point c ∈ I, then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

provided the second limit exists.

Taylor’s Theorem with Lagrange Remainder : If f : I → R is n times differentiable on the open interval
I, and x,a ∈ I, then,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1 +

f (n)(t)

n!
(x− a)n

for some t ∈ (x,a).

Taylor’s Theorem with Cauchy Remainder : If f : I → R is n times differentiable on the open interval I,
and x,a ∈ I, then,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n−1)(a)

(n− 1)!
(x− a)n−1 +

f (n)(t)

(n− 1)!
(x− t)n−1(x− a)

for some t ∈ (x,a).
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